
A DISCIPLINED APPROACH TO SOLVING PROBLEMS

by
E. H. Beitz (Spring - 1978)

Visiting Scholar, University of Utah, Salt Lake City, Utah, U.S.A.
Computer Systems Consultant, Saint Paul, Minnesota, U.S.A.

The process of designing a solution to a problem is difficult to describe.
Prior experience, and a disciplined review of the pertinent data and
relevant alternatives, can help to stimulate one's creative intuition. A
mechanism for disciplining the reviewing process - in the form of decision
tables - will be put forward. The same mechanism can be shown to be a
useful guide to developing tests of the solution, enhancing and otherwise
altering the system, and for communicating the intent of the solution to
non data-processing people. All of the attributes of well-structured
programs are easily retained and there are numerous possible alternatives
for generating the system that carries out the solution.

The most important benefit to be derived from using a computer is the uniformity and
discipline that it brings to a procedure. Programs invariably fail when situations that
"can't happen" do, or when conditions that were not considered arise, (assuming, of
course, that what was considered, was handled correctly). The methodology presented
in this paper does not guarantee that a user will be successful because ultimately the
discipline is self-imposed. Neither is it a sure-fire recipe for solving problems; it is
rather a tool - a tool to help problem solvers organize their approach to implementing
their solutions.

We all tackle a problem with a rag-bag of ideas and some a priori experience. Brinch
Hansen (1973) is one of the few designers who honestly admit that the elegant
algorithms that they publish are really the very highly refined products of a rather
complex process. (A process which is sometimes difficult to understand!)

Parnas (1971) has suggested that the data be considered as the major element in
determining how a solution is partitioned. While essentially agreeing with him, it is
often difficult to decide on the set of data elements that will be required until a
particular representation and/or algorithm is chosen.

2

A procedure may be treated as a finite state automaton. In order to model the finite
state automaton one must make an initial partitioning - the set of states, the input
alphabet, the output alphabet, the transition mapping from state to state, the starting
state, and the final state, must all be chosen!

The methodology proposed below also requires an initial partitioning. The first attempt
at partitioning may bear no resemblance to the final one; the important thing is that any
partitioning that the designer feels might be important will suffice. An attempt to
ensure that everything has been thought of will simply block the problem solving
process.

INTRODUCTION TO THE METHODOLOGY
It is proposed that an unlimited entry decision table be used as the basic notation for
representing the solution to a problem. The decision table may be thought of as an
analog for a finite state automaton. To ensure the completeness of the set of states some
constraints will be introduced into the process of determining the state of the
automaton. The input alphabet will consist of a set of equivalence classes, each one of
which is a sequence of actions that may or may not alter the environment. The
environment comprises a set of data elements. The transition from one state to the next
cannot be represented as a simple mapping but must be determined by examining the
environment. During the process of determining the state it is vital that the
environment is not altered! Each state implies the invocation of one, and only one, of
the equivalence-classes in the input alphabet. The application of the sequence of actions
of the equivalence class may alter the environment, which in turn will determine the
next state, which in its turn implies the selection of the next sequence of actions to be
executed. This cycle of events either does or does not terminate; but that depends on the
nature of the problem.

CONDITIONS, RULES AND THE PROBLEM SPACE
The first step is to try to define the set of states that will completely cover the problem.
This set of states will be called the problem space. (This too is an exercise in
partitioning.) One or more conditions need to be decided on. What a condition is, is best
illustrated by an example: Suppose that a 16-bit variable named v represents a positive
integer in the range x to x + 65535; suppose too, that depending on which of a number
of intervals v is in, the procedure that is to be carried out differs. The defined intervals
are:

k, between d and e inclusive;

l, between b and c inclusive and between f and g inclusive;

and m, between x and a inclusive and between c and d.

3

These could be represented as a number line as follows:

Note that it is a true partitioning in that the intervals are disjoint. But there are some
values that v could take for which no defined interval has been named! This
discontinuous interval must be named in order to ensure completeness. Let us call it n
and define it as:

n, when v is not in either k or l or m.

It isn't necessary to know all the details about a condition in order to start solving the
problem. Neither do all the conditions have to be known at the outset. For each
condition that is named it is only necessary to provide:

•••• a name - to identify the condition,

•••• an exhaustive set of alternatives - regardless of whether the
partitioning is too fine or not fine enough,

•••• an environment - the set of variables that must be referred to in order
to determine which alternative applies,

•••• and a brief description of what it is that the condition determines.

Let us call the set of alternatives for the condition C1 the set CA1. Now, if m conditions
are defined then the problem space is defined by the Cartesian product of the sets of
alternatives:

PS = CA1 X CA2 X ... X CAm.

Each state that is a member of the problem space is known as a rule. No matter how
many new conditions or how many new alternatives are added to the problem space, it
will always be possible to identify exactly which rules are effected! This means that
those parts of the solution that have already been dealt with will in most cases not be
altered when the new situations are discovered. The problem space is combinatorially
complete and even when the conditions or alternatives are permuted every rule will
still be present.

It's important that a strict enumeration of the rules be possible. To make this possible it
is necessary to order each set of alternatives. This is simply achieved by mapping each
set of alternatives onto a zero-based index set. This serves to give the resulting decision
table representation of the solution a desirable regularity, which in turn makes it
possible to recognize patterns by eye-balling the table.

4

ACTIONS AND EQUIVALENCE CLASSES
Before considering how the actions are related to the conditions and rules let us look at
how an action is defined. In a manner similar to the conditions it is necessary to provide
some information for each of the actions, as follows:

•••• a name - to identify the action,

•••• a reference environment - the set of variables that are read by the
procedure that implements the action,

•••• an affected environment - the set of variables that might be altered by
the procedure that implements the action,

•••• a brief description of what the action accomplishes, and

•••• the set of equivalence classes in which the action is included.

Each rule will require that a specific sequence of actions be executed. The similarity of
the sequences for a number of different rules is precisely what makes the computer so
usable. One of these action sequences defines an equivalence class, and the equivalence
class itself is represented by two sets: the action sequence defining the equivalence class,
and the set of rules for which that action sequence is invoked.

These action sequences may not in fact be strict sequences! Provided that two actions
are not sequentially dependent and that the entire environment of each is disjoint with
respect of the others affected environment, there is no reason why both of them cannot
be executed concurrently. A notational device, that allows this concurrency within an
equivalence class to be represented, will be found in Appendix A.

THE PROBLEM SOLVING PROCESS
In an unpublished working paper (Beitz 1974) I proposed that an interactive system for
solving problems represented in decision table form, be implemented. The method may
best be summarized as an attempt to permute the conditions, the sets of alternatives
and the actions so that those which are similar are adjacent to one another. The problem
space for most solutions is usually too large to represent on a single piece of paper in its
complete form. However, after reducing the table by successive permutations of its
constituents, most problem solutions seem to fit on a sheet of letter-sized paper
(without having to resort to very small printing).

An example of a hypothetical problem solution will be presented below; first in its
complete form and then in what might be called its final form. We will assume that the
problem space is defined by the three sets of alternatives CA1, CA2 and CA3:

CA1 = < d, e, f, x = d or e or f >

CA2 = < h, j, k = h or j >

CA = < g, g >

5

The resulting problem space will look like this:

C1 d e f x

C2 h j k h j k h j k h j k

C3 g

RULE 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Suppose that the set of actions over which the equivalence classes are defined is:

{A1,A2,A3,A4,A5,A6}

Let us also assume that whenever both A2 and A4 are members of the same equivalence
class, A2 must be completed before A4 is begun; expressed as a constraint as follows:

<A2,A4>

The complete initial table might be:

C1 d e f x

C2 h j k h j k h j k h j k

C3 g

RULE 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

A1 ✔✔✔✔ ✔ ✔✔✔ ✔ ✔✔✔ ✔ ✔✔✔ ✔ ✔✔✔ ✔ ✔✔✔ ✔ ✔✔✔ ✔ ✔✔✔ ✔ ✔✔✔

A2 ✔✔✔✔ ✔ ✔✔✔ 1 ✔✔✔✔ 1 1 ✔✔✔✔ 1 1 1 1

A3 ✔✔✔✔ ✔ ✔✔✔ ✔ ✔✔✔ ✔ ✔✔✔ ✔ ✔✔✔ ✔ ✔✔✔ ✔ ✔✔✔ ✔ ✔✔✔ ✔ ✔✔✔ ✔ ✔✔✔

A4 2 ✔✔✔✔ ✔ ✔✔✔ 2 ✔✔✔✔ 2 2 ✔✔✔✔ 2 2 2 ✔✔✔✔

A5 ✔✔✔✔ ✔ ✔✔✔ ✔ ✔✔✔ ✔ ✔✔✔ ✔ ✔✔✔ ✔ ✔✔✔ ✔ ✔✔✔ ✔ ✔✔✔ ✔ ✔✔✔

A6 ✔✔✔✔ ✔ ✔✔✔ ✔ ✔✔✔ ✔ ✔✔✔ ✔ ✔✔✔ ✔ ✔✔✔ ✔ ✔✔✔ ✔ ✔✔✔

EC 0 1 2 3 4 4 0 5 2 3 4 4 6 7 2 3 4 4 6 8 2 3 4 4

The process of reducing the table may now be described. The designer might realize
while dealing with a specific rule that some refinement is possible. For example,
suppose that the rules were presented to the designer in the order of the complete table

6

(above). When rule 11 is presented the designer realizes that whenever C2 takes
alternative k then action A6 is executed, and what is more, is the only action that is
executed. This may be verified for those rules already dealt with - namely for rules 4, 5
and 10. There are only two possibilities: either the designer's insight is substantiated by
this check or it is refuted! (The confirmation does not necessarily imply that it is
'correct'; this decision is the designer's. Refutation, on the other hand, is far more
significant!) If the hypothesis is refuted then it becomes necessary to examine the
contradiction. In the particular case presented in this example, if the designer decides
that the insight was indeed correct, then it will no longer be necessary to consider rules
16, 17, 22 and 23. These rules are essentially done.

Situations like the one just described are the rule rather than the exception. The eight
rules that are affected by the acceptance of the hypothesis in our example may be
collected together. This is done by changing the order of the conditions. Simply making
C2 the primary condition at the head of the table will suffice to make the eight rules
adjacent. Any change to either the order of the conditions or the order of the
alternatives in a single set of alternatives, will change the order of the rules. To conform
to the strict enumeration the rules may simply be renamed.

There will be a one-to-one onto mapping from the old rule names to the new rule
names. The following problem space is identical to the one in our example above and
both the old and the new rule names are shown:

C2 h k j

C1 x e f d x e f d x e f d

C3 g

OLD
RULE

18 19 6 7 12 13 0 1 22 23 10 11 16 17 4 5 20 21 8 9 14 15 2 3

NEW
RULE

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

After permuting the conditions of our example the final table for the solution to the
problem might look like the table on the following page.

It is quite evident that this final table is a lot simpler to comprehend than the complete
table. The actions and the conditions and their alternatives may be at as high a level of
abstraction as the designer wishes. Each action or condition may be represented by a
decision table in its own right. This process will be known as elaboration. There is an
important difference between the table representing the elaboration of a condition and
that of an action. The condition's table may not include any actions! The elaboration of a
condition serves to do nothing more than select an alternative. In the case of an action

7

the elaboration is a decision table similar to that of the problem itself with the constraint
that the environment of the action and its elaboration are identical.

C2 h j k

C3 g g g g p ∈ ∈ ∈ ∈ CA3

C1 d or e f or x d e f x r ∈ ∈ ∈ ∈ CA1 r ∈ ∈ ∈ ∈ CA1 r ∈ ∈ ∈ ∈ CA1

RULE 0, 1 2, 3 4 5 6 7 8..11 12..15 16..23

A1 ✔✔✔✔ ✔ ✔✔✔ ✔ ✔✔✔ ✔ ✔✔✔ ✔ ✔✔✔

A5 ✔✔✔✔ ✔ ✔✔✔ ✔ ✔✔✔ ✔ ✔✔✔ ✔ ✔✔✔

A2 ✔✔✔✔ 1 ✔✔✔✔ ✔ ✔✔✔ 1 1

A3 ✔✔✔✔ ✔ ✔✔✔ ✔ ✔✔✔ ✔ ✔✔✔

A4 ✔✔✔✔ 2 ✔✔✔✔ 2 2 ✔✔✔✔

A6 ✔✔✔✔

EC 0 6 1 5 7 8 2 3 4

When a table invokes an action whose elaboration is that table itself, we have recursion.
The important aspect of the whole scheme is that the problem is treated as a unified
object and is essentially a nested hierarchy of sub-problems. Any one of a number of
different programs may be coded to represent the solution and testing also becomes an
orderly procedure. Ultimately as was pointed out in the beginning, the discipline is self-
imposed but the tables make it much easier for the designer to live with this imposition!

8

APPENDIX A

A NOTATIONAL DEVICE
FOR REPRESENTING EQUIVALENCE CLASSES
A sequence of actions may sometimes have some strict order in which the individual
actions must be executed. This is usually required when more than one action refers to
the identical data environment. The designer must specify the order in which such
actions are to be executed. The set of action names, delimited by commas, and enclosed
in brackets of one form (say < and >) would indicate that those actions must be executed
in sequence starting with the leftmost. When actions may be executed concurrently they
will be enclosed in brackets of another form (say { and }). A single element in a
sequenced action set may be a set of concurrent actions and similarly a single element in
a set of concurrent actions may be a sequence of actions.

For example, if the action sequence for an equivalence class consists of A1 followed by
A2 followed by A3 then the action sequence for the equivalence class is:

<A1,A2,A3>

or, graphically:

An example of a concurrent set of actions might be (graphically):

or, in our notation:

{A4,A5,A6}

which is identical to all of these:

{A4,A6,A5} {A5,A4,A6} {A5,A6,A4} {A6,A4,A5} {A6,A5,A4}

9

A more complex example combining both forms might be (graphically):

or using the notation:

{A17,<A7,{A10,<A8,A9>,<A11,A12,A13>},{A14,A15},A16>}

BIBLIOGRAPHY

Beitz, E. H., A proposed method for interactive problem solution using an exhaustive,
combinatoric, decision-table technique. Working paper - Decision Table Task
Group of CODASYL, 1974.

Brinch Hansen, P., Operating System Principles. Prentice-Hall, 1973.

Parnas, D. L., Information distribution aspects of design methodology. In: Proceedings
of IFIP Congress 1971, August, 1971. North Holland, 1972.

The author was invited to present this paper at a conference at the University of Aarhus
in Aarhus, Denmark in May 1978.

