
THE CONCEPTUAL DATABASE

Here we will examine the information
environment without regard to machine
representation. A database may conveniently
be thought of as a collection of objects. Each
object exists by virtue of its being described as
one of the objects comprising the database.

Every object is represented by some subset of
its properties, (where property is used as
described by Mealy1). The use for which the
database is being kept will usually dictate
which subset of properties is relevant.

Neither the set of objects O, nor the set of
properties P, is our database. In fact the
database DB is the binary relation from the set
of properties P to the set of objects O. Or more
formally –

DB ⊂ (P × O) = {<p, o> : (p ∈ P)(o ∈ O)}.

Figure 1 shows the database DB as a subset of
a cartesian plane. The collection of
intersections marked with an x represents the
database DB. In general each object o in the
database is represented by a set of properties

o = { p : p is a property of o }.

SETS AS A MODEL FOR DATABASE REPRESENTATION:
MUCH ADO ABOUT SOMETHING

E. Henry Beitz, Consultant
2563 Esch Avenue

Ann Arbor, Michigan 48104-6255
(734) 973-0906

A database models real-world objects and ideas. The power and
flexibility of set theory are ideally suited to the problems of mod-
elling the real world without altering it. By reviewing some of the
basic concepts involved we will explore the possibility of repre-
senting large and complex models in the environment of a digital
computer, in what this author hopes will prove to be a suggestive
and innovative way.



USING THE DATABASE

Two primary functions can be identified in
order to use a database. The first we will call
selection. This has to do with choosing a set of
objects from the database. Having selected a
set of objects the second of our two functions
becomes necessary. Let us call it the extraction
function. Extraction is the process of obtaining
values for a specified set of attributes, from the
set of properties that represent each of the
objects selected in a prior selection function.

Basically, selection always involves one or
more of the properties. The set of objects
having a particular property p, is given by:

DB[{p}] = {o : < p, o > ∈ DB}.

Regardless of how many properties are
involved, this choice is always determined by
evaluating a boolean expression whose
operands are from the set:

{DB[{p}] : p ∈ P}.

To extract properties from a set of selected
objects it is desirable to define another set of
sets – the set of sets of properties attributed to
specific objects:

{DB[{o}] : o ∈ O}.

Since the set of properties P, is a binary relation
from a set of attributes A to a set of values V,
the pertinent values could be extracted from
each of the selected sets of properties by
specifying the desired subset of A, the
attributes. Let us call this subset RA – the
required attributes.

The resulting set of values, RV, for a selected
object o, would be:

RV = (DB[{o}])[RA]

= {v : (< a, v > ∈ DB[{o}])(a ∈ RA)}

We are not concerned with the use to which
the set RV, of resulting values, is put. The
resulting values may be displayed, averaged,
divided by 7.694, or whatever. The main
purpose here is to be able to access whichever
part of the database is needed.

SETS AS MEMBERS OF A SET

There is a need to allow sets of properties to be
included as members of a set of properties that
represent an object. Because it is proposed that
each property be explicitly represented this
does not constitute a problem. A simple case is,
for example, when the set of properties is a
subset of:

P|{ai} = {< a, v > : (a = ai)(< a, v > ∈ P)}

that is, every property in the set that is a
member of another set, has a common
attribute.

A slightly more complex example would be
the case where the nested set has both a
common attribute and is ordered, or is a tuple.
Because of the ambiguities discussed by
Childs2, 3, 4, it will be necessary to explicitly
represent the order as an attribute-qualifying
ordinal. This may be thought of as follows:

<< a, vd >, < a, ve >, < a, vf >>
= {< a.2, ve >, < a.1, vd >, < a.3, vf >}

The sets representing objects may only consist
of properties, the atomic elements of the
scheme. A property may only take a single
value in any single context (where the context
is defined by the attribute).

RELATIONSHIPS

To make it possible to represent sets as related
to other sets, we must look more closely at the
notion of a property. The set of attributes
needs to include names for relations (and their
inverse relations).

2



An appropriate set of object identifiers must be
defined as the set of values that each of these
roles, as we will call the names for relations,
may take.

Consider a relation R from Oa, a subset of the
set of objects O, to Ob, another subset of O.
(The two subsets Oa and Ob are not
necessarily disjoint.) If x ∈ Oa is R-related
to y ∈ Ob, then the set of properties that
represent y should include < ar, vx >, and the
set that represents x should include
< ar, vy >. (vx and vy are the object identifiers
of x and y respectively, and ar and ar are the
roles from Oa to Ob and Ob to Oa
respectively).

The reason for including this seemingly facile
description of a relationship is to establish the
concept of object identifiers. In the relational
model5, 6 each subset of the partition of the set
of objects and every other relation requires a
primary key, which essentially serves the same
purpose.

The reason for not simply nesting the
properties of the related object, suitably
qualified, in those representing the object to
which it bears the relationship, is that the same
object may be the subject of a number of
relationships. This implies redundant
representation of some objects, which in turn
implies multiple updating of these same
objects’ sets of properties.

Because it is often necessary to process the
relationships without immediate regard for the
objects that are the subject of the relationship,
the relationships may themselves be treated as
objects. The proposed model deals with objects
represented by sets of properties, and because
of the concept of a property, complex
relationships may be handled.

A simple binary relation such as the one
described above may be represented as a set of
objects. Each object that is a member of R
would look like this:

{< ar, vx >, < ar, vy >}

where vx and vy are object identifiers for some
object that is a member of Oa, and some object
that is a member of Ob, respectively. The set R,
of objects representing the relationship, is itself
a subset of the set of objects comprising the
database. Each object that is a member of R
will also have an object identifier.

A selection function will suffice to find all the
objects R that have a property < ar, vx >.
Having selected a set of relationships from R
we can invoke the extraction function to obtain
the values of the properties having the
attribute ar, for each of the selected
relationship objects. Determining which object
or objects in the one subset are related (in a
particular role) to which specific object or
objects of the other subset, is a simple process.

There is no reason why each instance of an
object’s inclusion in a relationship would have
to be separately represented. The constraints
that apply to each of the role-names would
determine this. For example, let Oa be the set
of vehicles, Ob the set of people, and R the
relationship of OWNERSHIP. One person
owning two vehicles would be the object –

{<VEHICLE, y>, <OWNER, x>, <VEHICLE, z>}

in R, where (y, z ∈ Oa) and (x ∈ Ob). Two
people jointly owning a number of vehicles
would also be easy to cope with. Because we
are dealing with a set of properties, the order
of the properties is not relevant. Of course, this
depends on the fact that the role-name is
explicitly recorded in each property.

The concept can be extended to cover much
more complex relationships:

<< PROFESSOR, COURSE, DAY, TIME,
ROOM>, STUDENT, GRADE >,

for example. It is important to realize that the
range of a property of a relationship might be
identical for more than one of the roles of that

3



relationship. The role-name is what makes a
distinction possible. Take an example from
genealogy – x IS THE PARENT OF y.
Although both have as their range the set of
people, the role-name associated with x might
be PARENT while that associated with y is
CHILD. (There are of course people who will
never appear in the relationship as a parent,
those who will never appear as a child, and
even some who won’t appear in the
relationship at all.)

The original kind of property may also be
included among the properties of an object
that represents a relationship. This simply
means that the sum total of what may be said
about the role is that it has a value. (See DAY,
TIME and GRADE in the example above. In an
integrated database it is highly likely that
there will be much more information about
each of the other items!)

THE MACHINE ENVIRONMENT

The model described above was conceived
with the characteristics of the modern digital
processor constantly in mind. Rapid execution
of the two primary functions, selection and
extraction, makes it necessary to have two
complementary representations of the
database. To ensure flexibility and to map each
of the two sets of sets to the memory that is
accessible in a particular environment, a
well-ordered and compact renaming of each
set is needed. This new internal name of each
set must remain invariant for the duration of
its existence.

Two identity functions are desirable; one that
uniquely names every object and one that
uniquely names every property. The simplest
function for either set would be from an
index–set of integers to the members of the set.
(Each object’s index ordinal will also serve as
that object’s identifier in the relationships
described above.)

The importance of freeing the representation
of each set of properties and each set of objects

from their storage addresses cannot be
emphasized sufficiently! Two indices need to
be provided. Each may comprise a block of
logically contiguous storage addresses and
every entry should be uniform in size. This
means that there are four distinct parts to the
representation of a database: the two indices
and the two sets of sets

(∀p ∈ P)(DB[{p}]) and (∀o ∈ O)(DB[{o}])

The indices serve to map the sets of
property–names and object–names to storage
addresses as depicted in Figure 2.

Each index and its related sets of images
represents the entire database. This makes it
possible to reproduce either representation
from the other. (To insure that at least one of
the two representations is intact, it is advisable
to store them on physically disjoint sets of
mass storage units.)

The high information density could result in a
greatly reduced volume of data transfer. At
any instant in time the size of both the sets of
properties and the sets of objects is finite. It
should be possible, therefore, to represent the
set of objects having a specific property, by a
string of fixed-length object identifiers; the size
of each object identifier being a function of the
total number of objects in the environment. In
a similar manner, each set of properties could
be represented as a string of fixed-length
property identifiers. It is only at the user
interface that it will be necessary to convert
these codes to readable strings of graphic
symbols.

Because sets of properties and objects are
represented as subsets of their index-sets a
simple well-ordering of each set is readily
available. By virtue of this encoding,
operations such as union, intersection and
difference of these well-ordered strings are
simply realized.

In the case of extremely large sets, particularly
of object identifiers of objects having a specific

4



property, numerous different representations
are possible7, 8, 9.

Any property may be used to gain access to
the database. Having gained access to the
database, the information space may be
traversed by way of the relationships. The
length of the path from the point of entry to
the desired objects and their properties will
depend on precisely which relationships are
explicitly represented.

Some relationships may be derived from
others. For example, MATERNAL-GRANDFATHER /
GRANDCHILD may be derived from MOTHER /
CHILD and FATHER / CHILD. When the former
relationship is heavily used it should be
explicitly represented (and will therefore have
to be maintained).

Any changes that effect the relationships from
which this derived, redundant one is formed,
must initiate a procedure to determine
whether the derived relationship should be
updated. The set of objects representing the
new relationship may be abandoned at any

moment in time. The only consequence will be
that the access path will become longer.

In current practice what is usually called
structure is implicitly represented in the
arrangement of stored data. In fact, where it is,
often defines, what it is. Structural information
should be represented explicitly so as not to
preclude any view of the environment being
modelled.

PARTITIONING THE DATABASE

The environments that we normally model
have characteristics that allow us to partition
the set of objects O in very useful ways.
(Partitioning is used in its strict sense, that
is, a set of non-empty subsets that are
disjoint and whose union is the set of objects
O.)

How a database is partitioned depends on its
contents and the manner in which it is
intended to be used. The reasons for
partitioning relate directly to the methods of
representing the database and to the nature of
the medium being used for modelling it. The

5



basis for partitioning the set of objects would
be a common property or perhaps even a set of
common properties. The modern digital
computer can very rapidly carry out quite
complex operations on a small database. What
is meant by small depends only on current
technology. Sensible partitioning should also
make it possible for the digital computer to
handle large, complex databases proficiently.

The subsets of the partition are objects in their
own right. Each such subset must be described
as an object that has those properties which are
common to all the database objects belonging
to that subset. This means that each of the
database objects must have as one of the
properties that describe it, a property that
indicates which subset of the partition it is a
member of. From this one property it may be
inferred that the object also has all of the
properties of its partition. When large
populations are involved this can mean a
substantial reduction in the amount of storage
required for the database. (But a word of
warning: too fine a partition would increase
the amount of processing needed to answer
even a simple query.)

The set of attributes that have a meaning for
every member of a subset of the partition can
be specifically enumerated. Further
qualification of each of the attributes would
also make it possible to control data integrity:
the set of values that constitute valid
properties of members of the subset in a
particular context, may be precisely described;
the fact that a specified number of properties
from a defined subset must be included in
each object’s set of properties, may be stated;
the case where each member of a subset of the
partition must take a unique value in a
particular context, can be dealt with; etc..

CONCLUSIONS

Current and projected technology has been
considered the prime reason for adopting the
point of view presented above. All the
constructs of the relational model5 may be
represented using the view described here.
Many of the phenomena observed by
Dewey10, Shannon11, Zipf12 and
Mandelbrot13 can be exploited in an
implementation using this model as its basis.
Of the three approaches to information
discussed by Kolmogorov14 the proposed
model‚ approximates the combinatoric one
most closely.

I would like to acknowledge the
contribution of my colleagues and other
mentors in putting this together. In
particular I would like to thank Jane Jodeit
who helped me sort it all out, and Ho-Nien
Liu who encouraged me to write this paper.

6



CITED REFERENCES

1. Mealy, G. H., Another look at data.
AFIPS Conference Proceedings, FJCC (1967), pp 525 - 534

2. Childs, D. L., Description of a set-theoretic data structure.
AFIPS Conference Proceedings, FJCC (1968), pp 557 - 564

3. Childs, D. L., Feasibility of a Set-Theoretic Data Structure – a general structure
based on a reconstituted definition of relation.
Information Processing 68, North Holland, Amsterdam (1969)

4. Childs, D. L., Extended set theory.
STIS Corporation, Ann Arbor, Michigan (1974), (distributed by author).

5. Codd, E. F., A Relational Model of Data for Large Shared Data Banks.
Communications ACM 13, 6 (June 1970), pp 377 - 387.

6. Date, C. J., An Introduction to Database Systems.
Addison Wesley (1975)

7. Bloom, B. H., Some Techniques and Trade-offs Affecting Large Data Base
Retrieval Times.
Proc. 24th National Conf. ACM (1969), pp 83 - 95.

8. Hardgrave, W. T., The Prospects for Large Capacity Set Support Systems Imbedded
within Generalized Data Management Systems.
Presented at the International Computing Symposium (1973), Davos, Switzerland.

9. King D. R., The Binary Vector as the Basis of an Inverted Index File.
Journal of Library Automation, 7, 4 (December 1974), pp 307 - 314

10. Dewey G., Relativ Frequency of English Speech Sounds.
Harvard University Press (1923)

11. Shannon, C. E., Prediction and Entropy of Printed English.
Bell System Tech. J. 30 (1951), pp 54 - 58

12. Zipf G. K., Human Behavior and the Principle of Least Effort.
Addison Wesley (1949)

13. Mandelbrot, B., Contribution à la théorie mathématique des jeux de communication.
Publ. de l’Inst. de Statistique de l’Univ. de Paris, Vol. 2, fasc. 1, 2 (1953), pp 80 - 102

14. Kolmogorov A. N., Three Approaches to the Quantitative Definition of Information.
International J. of Comp. Math. Vol. 2, (1968), pp 157 - 168

7


