
A Set-Theoretic View
of Database
Representation

Henry Beitz Ann Arbor Michigan

To achieve what I believe to be an acceptable Information
Management System, I propose that a set-theoretic view of
a database be adopted. Most potential database users use
the language of set theory in their day to day references to
the objects and relationships of their databases. Instead of
twisting these natural language references to ‘collections’,
a representation that is modelled on sets should be imple-
mented. Among the many advantages to be gained by
adopting this approach are: non-redundant storage of data
common to two or more application environments, con-
trolled access to the entire database by any data-
dependent key, rapid selection and isolation of easily
specified subsets of data, and the extraction of only those
data necessary to satisfy specific needs.

This description of database representation will include some
conceptual aspects and will address specific problems related
to the computer-based database. Some of the areas that will be
addressed are security, integrity, accessibility, and flexibility.

Initially some premises about databases must be stated: they
are essentially a repository for data and for the relationships
pertaining among data; the data may be either static or dy-
namic and provision must be made for adding, removing and
altering data; access to the data in a timely, unrestricted and
also an unpredictable manner is desirable.

All databases are really representations of relationships, (or re-
lations). A relation names a specific connection between two
things. In this sense an attribute name is a relation that is given

A Set-Theoretic View of Database Representation

2

to the connection between an object and the 'value' of the re-
lation with respect to that object. Suppose that one of the
many objects represented in a database is a product produced
by a company. For this product to be inserted into the data-
base we must store an encoded representation of at least one
property that is ascribed to this product. Let us assume that we
want this product to be known as PRODUCT-XYZ. No matter
how this piece of data is recognized it has to have a name. We
will call it the ITEM-NAME (i.e., the value of the relation ITEM-
NAME with respect to our product is PRODUCT-XYZ).

There are numerous methods of representing this property, as
we will call it, of the product. The complete string ‘ITEM-NAME
= PRODUCT-XYZ’ is one method and just the string
‘PRODUCT-XYZ’ in a very specific place in the record which
represents the product is another. Positional significance is so
much a part of our a priori experience that it is often easy to
lose sight of its tacit meaning. For example, almost everyone
would make the following simple association:

236 = (2 x 100) + (3 x 10) + (6 x 1)

In much the same manner card-columns and fields, not to men-
tion data descriptions and schema, are very much an integral
part of our data-processing environment.

There are other relationships, which require very much more
explicit representation. These are relationships, which must be
considered as data. For example, if two products must be sold
together and are therefore mutually dependent, this depend-
ency needs to be recorded in our database. Another example
would be the relationship between a component and the as-
sembly of which it is a part. As systems become more sophisti-
cated, there is an emerging tendency for this latter type of rela-
tion to dominate the database. This would seem to be a logical
outcome of integrating complex sub-systems. Since it implies
non-redundant storage of commonly used data, it is desirable.
This in turn ensures that any user examining a dynamic datum
sees the most recent value of that datum.

So much for relations. It goes without saying that the ability to
add, delete and update representations of objects must be pro-
vided. There are many ways of approaching updating. How-

Henry Beitz

3

ever, we would like to suggest that a process analogous to
making a course change while flying under Instrument Flight
Rules conditions be used. Any partial updates or updates
achieved by over-writing in place must be avoided. The present
course must be maintained and at an extrapolated time and
place having determined the new heading, ground speed, etc.,
the course alteration is made. This will not only guarantee the
integrity of the database, but will also permit recovery without
loss of data in the event that a system failure occurs.

The most significant reason for proposing this particular ap-
proach to an Information Management System is that all too
often the premises that influence an IMS design become ob-
solete shortly after the implementation has been completed.
The proposed system will allow an organization to dynamically
reorganize their database without restricting access to the sys-
tem. The IMS design may truthfully be described as a solution
to the unpredictable inquiry problem. Database reorganiza-
tion to enhance response time for a specific user performing an
experiment or responding to a crisis will be possible as part of
the proposed IMS.

A Set-Theoretic View of Database Representation

4

Every object about which data will be recorded really has an
infinite number of properties. In a computer-based system, we
must confine our representation to the comparatively small
number of properties relevant to our needs. The IMS may be
conceived as a mapping from a set of objects onto a set of
properties as shown in Figure 1:

Neither of the enclosed sets is really the database. In fact, the
database is really nothing more than the arrows in Figure 1. The
set of properties is data, but that is all. By itself, the set of prop-
erties is almost meaningless. The set of objects serves as noth-
ing more than a rallying point for collections of properties. The
set of objects does not even contain the association that a user
makes to identify a specific product. In fact, all access to the
database can only be made by way of the set of properties.

If, for example, the WEIGHT of the third product in Figure 1 is
needed, a user would have to start by invoking the inverse
mapping and would have to know that NAME = PRODUCT-Q.
The inverse mapping would identify the correct rallying point
from which it will be possible to find WEIGHT = 0.8 x 10.

Another example might be find the largest dimension of all
products with WEIGHT = 0.8 x 10. Again, we start off in the set
of properties. This time, the inverse produces two rallying
points and the following result is produced quite simply:

PRODUCT-X with largest dimension LENGTH-C = 0.86
PRODUCT-Q with largest dimension LENGTH-A = 2.68

Most IMS functions can be made up from a sequence of two
types of basic functions. The two basic kinds of function are
selection and extraction. Selection is often enough to satisfy an
inquiry in its own right. An example using the simple database
of Figure I would be, are there any objects having the property
LENGTH-A < .5? A slightly more complex inquiry requiring a
more explicit response than simply yes or no would be how
many objects have LENGTH-B > 0.2? (From the diagram, the
response to the former example will be seen to be no and the
response to the latter example will be 3).

The selection criteria could become considerably more com-
plex. For example, how many of the products with

Henry Beitz

5

WEIGHT<102 also have a LENGTH-A < 1? (The response should
be 1). None of the examples in the previous paragraph involve
extraction, but let us assume that we rephrase the last example
to read, what is the value of the relation NAME of the prod-
ucts with WEIGHT <102 and LENGTH-A < 1? Here the re-
sponse should be PRODUCT-X. Now let us look at the process
of responding to this request in greater detail.

The set of rallying points, or accession numbers as we will call
them, that correspond with each of the selection criteria must
be identified. The result will be:

WEIGHT < 102 : <FIRST PRODUCT> <THIRD PRODUCT>
LENGTH-A < 1 : <FIRST PRODUCT>

and the intersection of these sets will result in:

WEIGHT < 102 AND LENGTH-A < 1 : <FIRST PRODUCT>

In this case, there is only one value associated with the relation
NAME, i.e., PRODUCT-X, (but there could have been a number

A Set-Theoretic View of Database Representation

6

of values). In general, extraction is an answer to the question,
what-value is associated with the relation X?

No matter how many occurrences of the property WEIGHT =
13.7 x 102 there are in the database, it will only have to be re-
corded once. There would be little advantage to this if the rep-
resentation of the arrows of Figure 1 had a large storage re-
quirement. Because each arrow does nothing more than select
one of the properties from the set of properties, a very com-
pact representation is possible. If each of the properties was to
be assigned a unique integer, then the binary representation of
this integer would suffice to represent its respective property
throughout the database. Encoding and decoding would only
be required at the user interface. The accession numbers as
codes for the rallying points can be treated similarly and the
diagram of Figure 1 would become Figure 2.

What makes the proposed IMS feasible is the method chosen
to represent the arrows of the two Figures 1 and 2. Two differ-
ent, but complementary representations are used. One is ori-
ented to the selection function and the other to the extraction
function. Let us assume that the accession numbers and the
property codes represent the coordinates along two adjacent
edges of a rectangular plane. Figure 3 represents this plane, its
coordinates and the •s represent our database.

It must be emphasized that Figure 3 illustrates a conceptual da-
tabase. The actual representation is shown in Figures 4 and 5
and consists of the two complementary representations. Each
of these representations is further partitioned into two parts,
namely an index or ordered set of descriptors and a set of
strings of ordered selection codes. This mechanism makes it
possible to move any of the ordered strings to any location
within the accessible storage space. The accession-number-

Henry Beitz

7

index contains descriptors of strings of property-codes while
the property-code-index contains descriptors of strings of ac-
cession numbers.

The selection function operates entirely on the representation
of Figure 5 and the representation of Figure 4 is operated on
only by the extraction function.

Although it may not be readily apparent, both representations
are complete and it is a straightforward process to reconstruct
either one from the other. To protect the database from device

A Set-Theoretic View of Database Representation

8

failures, it is desirable to physically separate the two representa-
tions comprising the database. In this way, recovery can virtu-
ally be guaranteed.

The biggest objection to totally inverted systems is the large
amount of work involved should a record change its address. It
is precisely because inversion is by address that this is a prob-
lem. In the IMS proposed here this aspect has been carefully
considered. The proposed system inverts by accession-number
and the accession-number remains constant for the objects en-
tire life within the system. The accession-number-index with its
descriptors provides exactly the one level of indirection needed
to eliminate this and many other problems. This index also
serves as the locus of control for individual property-code
strings. This in turn allows synchronized updating of the same
on-line database by numerous simultaneous users. All updates
imply a change to the descriptor since overwriting in place is
not allowed. This implies the locking and unlocking of individ-
ual entries in the accession-number-index. This continual
movement of strings is used as an aid to continuous storage
management and garbage collection.

There is a very high degree of security inherent in the encoded
representation. The user has no way of determining the code
for a value or the accession number of an object. Both items
are internal to the IMS. With the exception of a small number
of set-theoretic operators that operate on accession-number-
strings and the synchronizing primitives needed to lock and
unlock parts of the system, the control of the entire system lies
predominantly in four routines: encode, decode, select and ex-
tract. Over and above this, the set description routines and
user-provided criteria are used to validate data and control all
users' access to individual data fields.

The encoding and decoding functions will not be discussed in
detail, but some of the considerations will be described. In the
conceptual model presented above all properties are handled
uniformly. The detailed design does not, however, treat them
all in the same manner; classification by attribute (i.e., relation
name), and type of data, makes some needed and different en-
codings necessary. For example, encoded representations of
numeric data in the same context, (i.e. bearing the same rela-
tion to each of a set of objects), should preserve order; it must

Henry Beitz

9

be possible to compare the codes to determine comparative
rank or equality.

Another example is the treatment of dates. All dates have four
inversions: day of the month, month of the year, relative year of
the time-span specified for the relation and offset in days from
the start of the time-span associated with the relation.

All sets of non-numeric strings have two representations, one
specifically for the encoding function and another for the de-
coding function. This not only provides the redundancy needed
to ensure recovery in the event of a malfunction, but also al-
lows the two representations to be ordered differently. This is
done to improve and simplify the encoding and decoding pro-
cesses; the encode representation is ordered on some property
of the external representation of the individual strings and the
decode list takes the form of the same strings ordered by their
codes ranked as binary integers.

The actual representation of the strings of property codes is
extremely compact. Only recorded properties are included and
no restriction is placed on the number of occurrences of values
bearing the same relation to a single object. Each user may
have a completely different view of the identical data and may
even choose to label the relations differently. Each set of ob-
jects requires a set description and either the user responsible
for the set will provide and control this description of the set or
a database administrator will. Whoever it is that is responsible
for a set will also control both public and specific users’ access
to that set.

Specific relationships between objects in the same or different
sets are themselves treated as sets of data. For example, indi-
vidual products in our original example might constitute a set
of objects and particular reports may comprise another. Each
report may require one or more products' data. Regardless of
how much data is stored concerning each of these objects,
their relationship to one another might make up a completely
separate data set. This data-set only has to represent the map-
ping between the two sets of objects. The individual details
may be extracted from the data sets representing the objects.

A Set-Theoretic View of Database Representation

10

Once again, a dual representation is desirable. Suppose that
the two sets of objects in Figure 6 represent our products and

Henry Beitz

11

reports, and the arrows their relationship. The two lists of Fig-
ure 7 would constitute the representation of these relation-
ships.

Depending on the particular characteristics of these relation-
ships, their representation could either be included in the set of
reports and the set of products, or it could be recorded as a
completely independent set. This is the kind of decision that
would be made by either the database administrator or by a
system algorithm that monitors usage. Rather more complex
relationships that can be derived from those recorded are also
possible. The area of familial genealogy provides numerous ex-
amples. Consider a data set recording the details of a popula-

tion. If the relations illustrated in Figure 8 are recorded, then it
becomes possible to infer the relationship – (PATERNAL-GRA
NDFATHER, GRANDSON), or any other family relationship for
that matter.

The birth of a son to any member of the population might
make a man a grandfather for the first time. When the new
child's data is added to the database including his relationships
to his parents, of course, then his relationship to his paternal
grandfather would be included in any subsequent requests for
data about the relation

(PATERNAL GRANDFATHER, GRANDSON).

The IMS described above is the result of a number of years of
careful analysis of user requirements and computer oriented
operations. The storage requirements for a comparatively large
database can be shown to be extremely modest. The many de-
tails are beyond the scope of this brief paper, but the author
feels that this IMS concept would be of great value to the user
community.

A Set-Theoretic View of Database Representation

12

APPENDIX

Sets in the context of the above may be simple or extremely
complex.

{A, B, C, D, E}

is a set of elements in which each element has no further com-
plexity. However, the members of a set may be complex sets in
their own right, and

{L, M. <N, O, P>, A, Q, {J, K}, B}

illustrates a more complex set. (D. L. Childs represents the level
of nesting explicitly in his Extended Set Theory.)

One of the more complex problems in the representation of
sets lies in the area of ordering. In a set, in the mathematical
sense, no ordering of the members of the set is implied. In the
use of sets to represent real world objects, order is in many
cases explicitly specified. Order also makes the computer ori-
ented manipulation of sets more simple. Set theory has pro-
vided a construction, (due to Kuratowski), for representing or-
dered n-tuples. Unfortunately this construction is ambiguous
when dealing with the ordering of more than two elements.
The ordered triple

<X, Y, Z>

may either be interpreted as the ordered pair <X, Y> followed
by the element Z or as the element X followed by the ordered
pair <Y, Z>

Using Kuratowski's construction the former becomes the set

{{{X}, {X, Y}}, {{{X}, {X, Y}}, Z}}

and the latter becomes the set

{{X}, {X, {{Y}, {Y, Z}}}}

To avoid this ambiguity order must be considered as data and
must be recorded as such in the representation of ordered tu-

Henry Beitz

13

ples. (Childs does explicitly represent order in his Extended Set
Theory.)

The sets referred to in the paper may have members which are
simple elements, sets or tuples. Order is treated as data and the
elements of a tuple that are members of a set are represented
by both their value and their order. The value may be a set, a
simple element or a tuple.

Every set has a unique name and when one set is a member of
another it is represented in the former set only by its name and
the fact that it is a set. In this manner the nesting problem is
solved.

This paper was originally presented at the ACM SIGMOD Work-
shop in Ann Arbor, Michigan in 1974.

A Set-Theoretic View of Database Representation

14

RELATED BIBLIOGRAPHY

Beitz, E. H., The-Interpretation of Structured Stored Data Using Delimiters.

Record ACM SICFIDET Workshop, Houston 1970.

Childs, D. L., Feasibility of a Set-Theoretic Data Structure: A General Structure

Based on a Reconstituted Definition of Relation. Proc. IFIP Congress 1968.

Childs, D. L., Description of a Set-Theoretic Data Structure. Proc. FJCC 1968.

Childs, D. L., Extended Set Theory: A Formalism for the Design, Implementa-

tion and Operation of Information Systems. Set-Theoretic Information Sys-
tems Corporation, Ann Arbor, Michigan 1974.

Dewey, G., Relativ Frequency of English Speech Sounds. Harvard University
Press 1923.

Feldman, J. A. and Rovner, P. D., An ALGOL-based Associative Language.

CACM Vol-12 No. 8 August 1969.

Halmos, P. R., Naive Set Theory. vanNostrand Reinhold 1960.

Kolmogorov, A. N., Three Approaches to the Quantitive Definition of Infor-

mation. International Journal of Computer Mathematics 1968.

Mealy, G. H., Another Look at Data. Proc. FJCC 1967.

Preparata, F. P. and Yeh, R. T., Introduction to Discrete Structures. Addison-
Wesley 1973.

Rovner, P. D. and Feldman, J. A., The LEAP Language and Data Structure.

Proc. IFIP Congress 1968.

Schwartz, J. T., Abstract Algorithms and a Set-Theoretic Language for their

Expression. Computer Science Department, Courant Institute of
Mathematical Sciences, NYU 1971.

Schwartz, J. T., On Programming: An Interim Report on the SETL Project-

Installment 1: Generalities. Computer Science Department, Courant
Institute of Mathematical Sciences, NYU 1973.

Shannon, C. E., Prediction & Entropy of Printed English. Bell System Techni-
cal Journal 1951.

Suppes, P., Axiomatic Set Theory. vanNostrand Reinhold.

Warren, H. S., ASL:.A Proposed Variant of SETL. Computer Science Depart-
ment, Courant Institute of Mathematical Sciences, NYU 1973.

Zipf, G. K., Human Behavior & the Principle of Least Effort. Addison-Wesley
1949.

